Last updated: 2022-01-24

Checks: 7 0

Knit directory: genes-to-foodweb-stability/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200205) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 18d1722. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/.Rhistory
    Ignored:    output/.Rapp.history

Untracked files:
    Untracked:  output/all.mar1.brm.adj.rds
    Untracked:  output/all.mar1.brm.unadj.ar2.lag.rds
    Untracked:  output/all.mar1.brm.unadj.noBRBRonLYER.rds
    Untracked:  output/all.mar1.brm.unadj.rds
    Untracked:  output/all.mar1.brm.unadj.xAOP2.rds
    Untracked:  output/initial.mar1.brm.adj.rds
    Untracked:  output/initial.mar1.brm.unadj.rds

Unstaged changes:
    Modified:   figures/AOP2-growth-no-insects.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/structural-stability.Rmd) and HTML (docs/structural-stability.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html c802852 mabarbour 2021-06-24 Build website
Rmd a054471 mabarbour 2021-06-24 Update location of .rds files to Release v2.1
Rmd f467085 mabarbour 2021-06-24 Revise analysis to address reviewer’s comments
Rmd 399b240 mabarbour 2020-10-11 remove old versions of analysis
Rmd c1aaf8e mabarbour 2020-10-11 remove old versions of analysis
html 51fc18b mabarbour 2020-06-23 Build site.
Rmd 86116c8 mabarbour 2020-06-23 bioRxiv version of code and data.
html 86116c8 mabarbour 2020-06-23 bioRxiv version of code and data.

General priors

Intrinsic growth rates

# from Jahan et al. 2014, Journal of Insect Science
# Table 4 lambda (finite rate of increase, discrete time analogue of intrinsic growth rate)
# calculated on a per-day basis and not logged. This is why I multiply by 7 and then take the natural logarithm
Jahan.r.BRBR <- log(c(1.42, 1.36, 1.32, 1.35, 1.40, 1.33, 1.38, 1.37) * 7)
mean(Jahan.r.BRBR) # 2.26
[1] 2.257713
sd(Jahan.r.BRBR) # 0.02
[1] 0.02468356
# visualize prior
hist(rnorm(1000, mean(Jahan.r.BRBR), sd = 1))

Version Author Date
c802852 mabarbour 2021-06-24
86116c8 mabarbour 2020-06-23
prior.r.BRBR <- "normal(2.26, 1)"

# from Taghizadeh 2019, J. Agr. Sci. Tech.
# Table 2 lambda (finite rate of increase, discrete time analogue of intrinsic growth rate)
# calculated on a per-day basis and not logged. This is why I multiply by 7 and then take the natural logarithm
Tag.r.LYER <- log(c(1.35, 1.30, 1.26, 1.23) * 7)
mean(Tag.r.LYER) # 2.20
[1] 2.196059
sd(Tag.r.LYER) # 0.04
[1] 0.04028153
# visualize prior
hist(rnorm(1000, mean(Tag.r.LYER), sd = 1))

Version Author Date
c802852 mabarbour 2021-06-24
86116c8 mabarbour 2020-06-23
prior.r.LYER <- "normal(2.20, 1)"

# random effects prior based on variance among cultivars
# I'm just going to use this for all of them, including parasitoids
mean.r.sd <- mean(c(sd(Jahan.r.BRBR), sd(Tag.r.LYER)))
# visualize prior
hist(rnorm(1000, mean = mean.r.sd, sd = 0.5))

Version Author Date
c802852 mabarbour 2021-06-24
86116c8 mabarbour 2020-06-23
# not changing for now
prior.random.effects <- "normal(0.03, 0.5)" # mean of BRBR and LYER

# I don't have a great sense for the growth rate of the parasitoid, other than that it should be negative
# this seems like a reasonable starting point

# visualize prior
hist(rnorm(1000, mean = -1.5, sd = 1))

Version Author Date
c802852 mabarbour 2021-06-24
86116c8 mabarbour 2020-06-23
prior.r.Ptoid <- "normal(-1.5, 1)"

Intra- and interspecific interactions

I assume they are weak, i.e. much less than \(|1|\). I also assume that all species exhibit intraspecific competition, aphids have negative interspecific effects with each other, but positive interspecific effects on the parasitoid. I also assume parasitoids have negative interspecific effects on the aphids.

## intraspecific, 1 = no density dependence. I would prefer to specify an offset first, so that 0 = no density dependence, like the other coefs, but I can't use the offset if I incorporate measurement error :-(
# visualize prior
hist(rnorm(1000, mean = 0.9, sd = 0.5))

Version Author Date
c802852 mabarbour 2021-06-24
86116c8 mabarbour 2020-06-23
prior.intra.BRBR <- "normal(0.9, 0.5)"
prior.intra.LYER <- "normal(0.9, 0.5)"
prior.intra.Ptoid <- "normal(0.9, 0.5)"

## negative interspecific, 0 = no interaction
# visualize prior
hist(rnorm(1000, mean = -0.1, sd = 0.5))

Version Author Date
c802852 mabarbour 2021-06-24
86116c8 mabarbour 2020-06-23
# most of these values are less than 1, which
# is indicative of saturating effects
prior.LYERonBRBR <- "normal(-0.1, 0.5)" 
prior.PtoidonBRBR <- "normal(-0.1, 0.5)"
prior.BRBRonLYER <- "normal(-0.1, 0.5)"
prior.PtoidonLYER <- "normal(-0.1, 0.5)"

## positive interspecific
# visualize prior
hist(rnorm(1000, mean = 0.1, sd = 0.5))

Version Author Date
c802852 mabarbour 2021-06-24
86116c8 mabarbour 2020-06-23
# most of these values are less than 1, which
# is indicative of saturating effects
prior.BRBRonPtoid <- "normal(0.1, 0.5)"
prior.LYERonPtoid <- "normal(0.1, 0.5)"

AOP2 effects

It was unclear to me a priori exactly how allelic differences at AOP2 would affect species’ growth rates or intra- and interspecific interactions. Therefore, I assumed these effects on specific rates could be positive or negative, but would likely be between -1 and 1 (i.e., not ridiculously large).

prior.AOP2 <- "normal(0, 0.5)"

Temperature effects

As with AOP2 it was unclear to me a priori how warming would affect species’ growth rates or intra- and interspecific interactions; therefore, I used the same prior as for AOP2.

prior.temp <- "normal(0, 0.5)"

Biomass effects

For both aphids, I thought that increasing biomass would increase their intrinsic growth rates, but only weakly, because I didn’t expect biomass to be limiting.

# visualize prior
hist(rnorm(1000, mean = 0.1, sd = 0.5))

Version Author Date
c802852 mabarbour 2021-06-24
86116c8 mabarbour 2020-06-23
prior.AphidBiomass <- "normal(0.1, 0.5)"

For the parasitoid, it was unclear to me whether increasing biomass would have positive or negative effects. I could imagine both, as increasing biomass may increase the search effort of parasitoids, resulting in a negative effect on their growth rate. Alternatively, more biomass may increase the quality of aphids, which could increase the parasitoid’s growth rate. Therefore, I specified a normal prior with mean = 0 and SD = 0.5, so that most of the distribution lied between -1 and 1 (i.e. saturating negative or positive effects).

# visualize prior
hist(rnorm(1000, mean = 0, sd = 0.5))

Version Author Date
c802852 mabarbour 2021-06-24
86116c8 mabarbour 2020-06-23
prior.PtoidBiomass <- "normal(0, 0.5)"

Model including all species

Formula

This follows equation 1 in the Supplementary Material.

# BRBR
all.BRBR.bf <- bf(log(BRBR_t1) ~ 0 + Intercept + (me(logBRBR_t, se_logBRBRt) + me(logLYER_t, se_logLYERt) + me(logPtoid_t, se_logPtoidt)) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1|p|Cage))  

# LYER
all.LYER.bf <- bf(log(LYER_t1) ~ 0 + Intercept + (me(logLYER_t, se_logLYERt) + me(logBRBR_t, se_logBRBRt) + me(logPtoid_t, se_logPtoidt)) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1|p|Cage))  

# Ptoid
all.Ptoid.bf <- bf(log(Ptoid_t1) ~ 0 + Intercept + me(logPtoid_t, se_logPtoidt) + me(logBRBR_t, se_logBRBRt) + me(logLYER_t, se_logLYERt) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1|p|Cage))

Priors summarized in Table S3

all.mv.priors <- c(
  # aop2 and AOP2 effects
  set_prior(prior.AOP2, class = "b", coef = "aop2_genotypes", resp = "logBRBRt1"),
  set_prior(prior.AOP2, class = "b", coef = "AOP2_genotypes", resp = "logBRBRt1"),
  set_prior(prior.AOP2, class = "b", coef = "aop2_genotypes", resp = "logLYERt1"),
  set_prior(prior.AOP2, class = "b", coef = "AOP2_genotypes", resp = "logLYERt1"),
  set_prior(prior.AOP2, class = "b", coef = "aop2_genotypes", resp = "logPtoidt1"),
  set_prior(prior.AOP2, class = "b", coef = "AOP2_genotypes", resp = "logPtoidt1"),
  # biomass effects
  set_prior(prior.AphidBiomass, class = "b", coef = "logBiomass_g_t1", resp = "logBRBRt1"),
  set_prior(prior.AphidBiomass, class = "b", coef = "logBiomass_g_t1", resp = "logLYERt1"),
  set_prior(prior.PtoidBiomass, class = "b", coef = "logBiomass_g_t1", resp = "logPtoidt1"),
  # baseline growth rates
  set_prior(prior.r.BRBR, class = "b", coef = "Intercept", resp = "logBRBRt1"),
  set_prior(prior.r.LYER, class = "b", coef = "Intercept", resp = "logLYERt1"),
  set_prior(prior.r.Ptoid, class = "b", coef = "Intercept", resp = "logPtoidt1"),
  # intraspecific effects
  set_prior(prior.intra.BRBR, class = "b", coef = "melogBRBR_tse_logBRBRt", resp = "logBRBRt1"),
  set_prior(prior.intra.LYER, class = "b", coef = "melogLYER_tse_logLYERt", resp = "logLYERt1"),
  set_prior(prior.intra.Ptoid, class = "b", coef = "melogPtoid_tse_logPtoidt", resp = "logPtoidt1"),
  # negative interspecific effects
  set_prior(prior.LYERonBRBR, class = "b", coef = "melogLYER_tse_logLYERt", resp = "logBRBRt1"),
  set_prior(prior.BRBRonLYER, class = "b", coef = "melogBRBR_tse_logBRBRt", resp = "logLYERt1"),
  set_prior(prior.PtoidonBRBR, class = "b", coef = "melogPtoid_tse_logPtoidt", resp = "logBRBRt1"),
  set_prior(prior.PtoidonLYER, class = "b", coef = "melogPtoid_tse_logPtoidt", resp = "logLYERt1"),
  # positive interspecific effects
  set_prior(prior.BRBRonPtoid, class = "b", coef = "melogBRBR_tse_logBRBRt", resp = "logPtoidt1"),
  set_prior(prior.LYERonPtoid, class = "b", coef = "melogLYER_tse_logLYERt", resp = "logPtoidt1"),
  # temp effects
  set_prior(prior.temp, class = "b", coef = "temp", resp = "logBRBRt1"),
  set_prior(prior.temp, class = "b", coef = "temp", resp = "logLYERt1"),
  set_prior(prior.temp, class = "b", coef = "temp", resp = "logPtoidt1"),
  # random effects
  set_prior(prior.random.effects, class = "sd", resp = "logBRBRt1"),
  set_prior(prior.random.effects, class = "sd", resp = "logLYERt1"),
  set_prior(prior.random.effects, class = "sd", resp = "logPtoidt1"))

Fit Model

all.mar1.brm.unadj <- brm(
  data = full_df,
  formula = mvbf(all.BRBR.bf, all.LYER.bf, all.Ptoid.bf) + set_rescor(TRUE),
  iter = 5000,
  save_pars = save_pars(latent = TRUE, all = TRUE),
  prior = all.mv.priors,
  file = "output/all.mar1.brm.unadj.rds")

all.mar1.brm.unadj
 Family: MV(gaussian, gaussian, gaussian) 
  Links: mu = identity; sigma = identity
         mu = identity; sigma = identity
         mu = identity; sigma = identity 
Formula: log(BRBR_t1) ~ 0 + Intercept + (me(logBRBR_t, se_logBRBRt) + me(logLYER_t, se_logLYERt) + me(logPtoid_t, se_logPtoidt)) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1 | p | Cage) 
         log(LYER_t1) ~ 0 + Intercept + (me(logLYER_t, se_logLYERt) + me(logBRBR_t, se_logBRBRt) + me(logPtoid_t, se_logPtoidt)) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1 | p | Cage) 
         log(Ptoid_t1) ~ 0 + Intercept + me(logPtoid_t, se_logPtoidt) + me(logBRBR_t, se_logBRBRt) + me(logLYER_t, se_logLYERt) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1 | p | Cage) 
   Data: full_df (Number of observations: 264) 
  Draws: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
         total post-warmup draws = 10000

Group-Level Effects: 
~Cage (Number of levels: 60) 
                                              Estimate Est.Error l-95% CI
sd(logBRBRt1_Intercept)                           0.18      0.12     0.01
sd(logLYERt1_Intercept)                           0.17      0.10     0.01
sd(logPtoidt1_Intercept)                          0.07      0.06     0.00
cor(logBRBRt1_Intercept,logLYERt1_Intercept)     -0.10      0.48    -0.89
cor(logBRBRt1_Intercept,logPtoidt1_Intercept)     0.08      0.50    -0.85
cor(logLYERt1_Intercept,logPtoidt1_Intercept)     0.01      0.50    -0.88
                                              u-95% CI Rhat Bulk_ESS Tail_ESS
sd(logBRBRt1_Intercept)                           0.46 1.00     2549     4640
sd(logLYERt1_Intercept)                           0.39 1.00     2321     4183
sd(logPtoidt1_Intercept)                          0.21 1.00     6017     4961
cor(logBRBRt1_Intercept,logLYERt1_Intercept)      0.81 1.00     4528     6645
cor(logBRBRt1_Intercept,logPtoidt1_Intercept)     0.91 1.00    12875     7451
cor(logLYERt1_Intercept,logPtoidt1_Intercept)     0.88 1.00    11683     8543

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Rhat
logBRBRt1_Intercept                     2.15      0.59     0.99     3.31 1.00
logBRBRt1_aop2_genotypes                0.03      0.13    -0.22     0.29 1.00
logBRBRt1_AOP2_genotypes                0.00      0.12    -0.23     0.23 1.00
logBRBRt1_temp                         -0.45      0.08    -0.61    -0.31 1.00
logBRBRt1_logBiomass_g_t1               0.02      0.25    -0.46     0.50 1.00
logLYERt1_Intercept                     3.08      0.51     2.09     4.08 1.00
logLYERt1_aop2_genotypes                0.19      0.11    -0.01     0.40 1.00
logLYERt1_AOP2_genotypes               -0.08      0.10    -0.27     0.11 1.00
logLYERt1_temp                          0.00      0.06    -0.11     0.13 1.00
logLYERt1_logBiomass_g_t1               0.05      0.21    -0.35     0.45 1.00
logPtoidt1_Intercept                   -1.92      0.55    -2.98    -0.84 1.00
logPtoidt1_aop2_genotypes               0.22      0.11     0.01     0.44 1.00
logPtoidt1_AOP2_genotypes              -0.11      0.10    -0.30     0.09 1.00
logPtoidt1_temp                        -0.16      0.06    -0.27    -0.04 1.00
logPtoidt1_logBiomass_g_t1             -1.12      0.22    -1.55    -0.68 1.00
logBRBRt1_melogBRBR_tse_logBRBRt        0.72      0.09     0.54     0.91 1.00
logBRBRt1_melogLYER_tse_logLYERt        0.04      0.12    -0.19     0.27 1.00
logBRBRt1_melogPtoid_tse_logPtoidt     -0.73      0.06    -0.86    -0.61 1.00
logLYERt1_melogLYER_tse_logLYERt        0.34      0.10     0.14     0.54 1.00
logLYERt1_melogBRBR_tse_logBRBRt        0.24      0.08     0.09     0.40 1.00
logLYERt1_melogPtoid_tse_logPtoidt     -0.68      0.05    -0.78    -0.59 1.00
logPtoidt1_melogPtoid_tse_logPtoidt     0.99      0.05     0.88     1.09 1.00
logPtoidt1_melogBRBR_tse_logBRBRt       0.07      0.07    -0.08     0.21 1.00
logPtoidt1_melogLYER_tse_logLYERt       0.45      0.10     0.26     0.64 1.00
                                    Bulk_ESS Tail_ESS
logBRBRt1_Intercept                    10107     7405
logBRBRt1_aop2_genotypes               13546     8138
logBRBRt1_AOP2_genotypes               13125     8587
logBRBRt1_temp                          6602     7763
logBRBRt1_logBiomass_g_t1              11071     8333
logLYERt1_Intercept                     9645     7397
logLYERt1_aop2_genotypes               12156     7630
logLYERt1_AOP2_genotypes               12192     7880
logLYERt1_temp                          7232     6676
logLYERt1_logBiomass_g_t1              11013     8015
logPtoidt1_Intercept                    9133     6787
logPtoidt1_aop2_genotypes              13611     7930
logPtoidt1_AOP2_genotypes              13266     8190
logPtoidt1_temp                        10937     8428
logPtoidt1_logBiomass_g_t1             10686     8894
logBRBRt1_melogBRBR_tse_logBRBRt        6297     6948
logBRBRt1_melogLYER_tse_logLYERt        6038     6329
logBRBRt1_melogPtoid_tse_logPtoidt     11112     8659
logLYERt1_melogLYER_tse_logLYERt        5820     7142
logLYERt1_melogBRBR_tse_logBRBRt        5761     6059
logLYERt1_melogPtoid_tse_logPtoidt     11829     7963
logPtoidt1_melogPtoid_tse_logPtoidt    13006     8341
logPtoidt1_melogBRBR_tse_logBRBRt       9621     7257
logPtoidt1_melogLYER_tse_logLYERt       9713     7690

Family Specific Parameters: 
                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma_logBRBRt1      1.23      0.06     1.13     1.35 1.00    12496     7477
sigma_logLYERt1      0.95      0.05     0.87     1.05 1.00    10246     7704
sigma_logPtoidt1     1.02      0.05     0.94     1.12 1.00    15968     8374

Residual Correlations: 
                             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
rescor(logBRBRt1,logLYERt1)      0.48      0.05     0.38     0.58 1.00     9085
rescor(logBRBRt1,logPtoidt1)    -0.22      0.06    -0.34    -0.10 1.00    14309
rescor(logLYERt1,logPtoidt1)    -0.06      0.06    -0.18     0.07 1.00    13786
                             Tail_ESS
rescor(logBRBRt1,logLYERt1)      8516
rescor(logBRBRt1,logPtoidt1)     8007
rescor(logLYERt1,logPtoidt1)     7635

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Carrying capacity check

# BRBR carrying capacity
fixef(all.mar1.brm.unadj)["logBRBRt1_Intercept","Estimate"] / (1 - fixef(all.mar1.brm.unadj)["logBRBRt1_melogBRBR_tse_logBRBRt","Estimate"]) 
[1] 7.81221
max(log(full_df$BRBR_t1)) # max observed in experiment
[1] 6.727432
# LYER carrying capacity
fixef(all.mar1.brm.unadj)["logLYERt1_Intercept","Estimate"] / (1 - fixef(all.mar1.brm.unadj)["logLYERt1_melogLYER_tse_logLYERt","Estimate"]) # too low
[1] 4.675535

Reproduce Fig. S5

# intrinsic growth rates
r_plots <- mcmc_intervals_data(all.mar1.brm.unadj, pars = c("b_logBRBRt1_Intercept","b_logLYERt1_Intercept","b_logPtoidt1_Intercept"), prob = 0.66, prob_outer = 0.95) %>%
  mutate(parameter = factor(parameter, levels = c("b_logPtoidt1_Intercept","b_logLYERt1_Intercept","b_logBRBRt1_Intercept"))) %>%
  ggplot(aes(x = parameter, y = m)) +
  geom_hline(yintercept = 0, linetype = "dotted") +
  geom_linerange(aes(ymin = ll, ymax = hh), size = 0.5) +
  geom_linerange(aes(ymin = l, ymax = h), size = 1) + 
  geom_point(size = 1.5) +
  ylab(expression(paste("Intrinsic growth rates (", italic("r"),")"))) +
  scale_x_discrete(name = "", labels = c("D","L","B")) + 
  coord_flip() +
  theme_cowplot(font_size = 8)

# AOP2 effect on intrinsic growth rates
delta_r_plots <- mcmc_intervals_data(all.mar1.brm.unadj, regex_pars = c("_aop2_genotypes","_AOP2_genotypes")) %>%
  separate(col = "parameter", into = c("b","species","allele","genotypes")) %>%
  mutate(species = factor(species, levels = c("logPtoidt1","logLYERt1","logBRBRt1"))) %>%
  ggplot(aes(x = species, y = m, color = allele)) +
  geom_hline(yintercept = 0, linetype = "dotted", color = "grey") +
  geom_point(position = position_dodge(width = 0.4), size = 1.5) +
  geom_linerange(aes(ymin = l, ymax = h), size = 1, position = position_dodge(width = 0.4)) + 
  geom_linerange(aes(ymin = ll, ymax = hh), size = 0.5, position = position_dodge(width = 0.4)) +
  scale_color_grey(name = "", labels = c("AOP2\u2013", "AOP2+")) + # viridis_d
  ylab(expression(paste("Allele effect (", Delta*"r", italic("G"),")"))) +
  scale_x_discrete(name = "", labels = c("D","L","B")) + #c(expression(italic("D. rapae")), expression(italic("L. erysimi")), expression(italic("B. brassicae")))) +
  theme_cowplot(font_size = 8) +
  coord_flip()

# Interaction matrix
b_data <- mcmc_intervals_data(
  all.mar1.brm.unadj, 
   pars = c("bsp_logBRBRt1_melogBRBR_tse_logBRBRt",
            "bsp_logBRBRt1_melogLYER_tse_logLYERt",
            "bsp_logBRBRt1_melogPtoid_tse_logPtoidt",
            "bsp_logLYERt1_melogBRBR_tse_logBRBRt",
            "bsp_logLYERt1_melogLYER_tse_logLYERt",
            "bsp_logLYERt1_melogPtoid_tse_logPtoidt",
            "bsp_logPtoidt1_melogBRBR_tse_logBRBRt",
            "bsp_logPtoidt1_melogLYER_tse_logLYERt",
            "bsp_logPtoidt1_melogPtoid_tse_logPtoidt"),
  prob = 0.66, prob_outer = 0.95) %>%
  mutate(parameter = factor(parameter, 
                            labels = c("B \u2b62 B","L \u2b62 B","D \u2b62 B","B \u2b62 L","L \u2b62 L","D \u2b62 L","B \u2b62 D","L \u2b62 D","D \u2b62 D")),
         baseline = c(1,0,0,
                      0,1,0,
                      0,0,1))

b_plots <- ggplot(b_data, aes(x = parameter, y = m, color = factor(baseline))) +
  geom_hline(aes(yintercept = baseline, color = factor(baseline)), linetype = "dotted")  +
  geom_linerange(aes(ymin = ll, ymax = hh), size = 0.5) +
  geom_linerange(aes(ymin = l, ymax = h), size = 1) + 
  geom_point(size = 1.5) +
  ylab(expression(paste("Interactions (", italic("b"),")"))) +
  scale_x_discrete(name = "", limits = rev) + 
  theme_cowplot(font_size = 8) +
  coord_flip() + 
  scale_color_grey(name = "", labels = c("Inter","Intra")) # viridis_d

# biomass effect on intrinsic growth rates
p_plots <- mcmc_intervals_data(all.mar1.brm.unadj, regex_pars = "Biomass_g_t1$", prob = 0.66, prob_outer = 0.95) %>%
  mutate(parameter = factor(parameter, levels = c("b_logPtoidt1_logBiomass_g_t1","b_logLYERt1_logBiomass_g_t1","b_logBRBRt1_logBiomass_g_t1"))) %>%
  ggplot(aes(x = parameter, y = m)) +
  geom_hline(yintercept = 0, linetype = "dotted") +
  geom_linerange(aes(ymin = ll, ymax = hh), size = 0.5) +
  geom_linerange(aes(ymin = l, ymax = h), size = 1) + 
  geom_point(size = 1.5) +
  ylab(expression(paste("Plant biomass effect (", italic("p"),")"))) +
  scale_x_discrete(name = "", labels = c("D","L","B")) +
  coord_flip() +
  theme_cowplot(font_size = 8)

# temperature effect on intrinsic growth rates
t_plots <- mcmc_intervals_data(all.mar1.brm.unadj, regex_pars = "temp$", prob = 0.66, prob_outer = 0.95) %>%
  mutate(parameter = factor(parameter, levels = c("b_logPtoidt1_temp","b_logLYERt1_temp","b_logBRBRt1_temp"))) %>%
  ggplot(aes(x = parameter, y = m)) +
  geom_hline(yintercept = 0, linetype = "dotted") +
  geom_linerange(aes(ymin = ll, ymax = hh), size = 0.5) +
  geom_linerange(aes(ymin = l, ymax = h), size = 1) + 
  geom_point(size = 1.5) +
  ylab(expression(paste("Temperature effect (", Delta*"r", italic("T"),")"))) +
  scale_x_discrete(name = "", labels = c("D","L","B")) +
  coord_flip() +
  theme_cowplot(font_size = 8)

# combine plots
MAR1_parameter_plot <- plot_grid(r_plots, delta_r_plots, t_plots, b_plots, p_plots, nrow = 3, ncol = 2, align = 'v', axis = 'l', rel_widths = c(0.8,1))
x11(); MAR1_parameter_plot
#save_plot(filename = "figures/MAR1-parameter-plot.pdf", plot = MAR1_parameter_plot, device=cairo_pdf, base_asp = 1.1)

Version Author Date
c802852 mabarbour 2021-06-24

Structural stability

stability_all.mar1.brm.unadj <- aop2_vs_AOP2_posterior_samples_unadj(all.mar1.brm.unadj, n.geno = 2, temp.value = 0, logbiomass.value = 0) 
stability_all.mar1.brm.unadj$aop2_SS_LP_BayesP # clearly stabilizing
[1] 0.9966
stability_all.mar1.brm.unadj$aop2_SS_LP_effect
[1] 13.0206
stability_all.mar1.brm.unadj$aop2_SS_LP_95CI
     2.5%     97.5% 
 3.873221 23.478849 

Aphid and parasitoid intrinsic growth rates

stability_all.mar1.brm.unadj$aop2_r_LYER_effect
[1] 0.5389944
stability_all.mar1.brm.unadj$aop2_r_LYER_95CI
       2.5%       97.5% 
-0.04038828  1.12561843 
stability_all.mar1.brm.unadj$aop2_r_Ptoid_effect
[1] 0.6588181
stability_all.mar1.brm.unadj$aop2_r_Ptoid_95CI
     2.5%     97.5% 
0.0859789 1.2534024 
stability_all.mar1.brm.unadj_n.geno1 <- aop2_vs_AOP2_posterior_samples_unadj(all.mar1.brm.unadj, n.geno = 1, temp.value = 0, logbiomass.value = 0)
stability_all.mar1.brm.unadj_n.geno1$aop2_r_LYER_effect
[1] 0.2694972
stability_all.mar1.brm.unadj_n.geno1$aop2_r_LYER_95CI
       2.5%       97.5% 
-0.02019414  0.56280922 

Reproduce Fig. S6 and S7

# merge full data set and that with remaining 
complete_df <- bind_rows(aphids_only_df, full_df, LP_df, L_df, P_df) %>% 
  arrange(Cage, Week)

predict_data <- complete_df

# get predictions
BRBR_predict_df <- predict_data %>% filter(BRBR_Survival == 1) %>% mutate(Abundance = BRBR_t1)
predict_BRBRt1 <- bind_cols(BRBR_predict_df, data.frame(predict(all.mar1.brm.unadj, newdata = BRBR_predict_df, resp = "logBRBRt1"))) %>% mutate(Species = "BRBR") 

LYER_predict_df <- predict_data %>% filter(LYER_Survival == 1) %>% mutate(Abundance = LYER_t1)
predict_LYERt1 <- bind_cols(LYER_predict_df, data.frame(predict(all.mar1.brm.unadj, newdata = LYER_predict_df, resp = "logLYERt1"))) %>% mutate(Species = "LYER") 

Ptoid_predict_df <- predict_data %>% filter(Mummy_Ptoids_Survival == 1) %>% mutate(Abundance = Ptoid_t1)
predict_Ptoidt1 <- bind_cols(Ptoid_predict_df, data.frame(predict(all.mar1.brm.unadj, newdata = Ptoid_predict_df, resp = "logPtoidt1"))) %>% mutate(Species = "Ptoid") 

# combine data
predict_all <- bind_rows(predict_BRBRt1, predict_LYERt1, predict_Ptoidt1) %>%
  mutate(Species = factor(Species, levels = c("BRBR","LYER","Ptoid"), labels = c("B. brassicae", "L. erysimi", "D. rapae")))

# get week when first species went extinct (always BRBR at least)
full_df_last_week <- full_df %>%
  group_by(Cage) %>%
  summarise(last_week = last(Week)) 

# would be nice to color code facets by number of aop2 genotypes e.g.
# something like? https://stackoverflow.com/questions/19440069/ggplot2-facet-wrap-strip-color-based-on-variable-in-data-set

# 20 C cages
plot_cage_dynamics20C <- filter(predict_all, Cage %in% 1:30) %>% 
  left_join(., full_df_last_week) %>%
  ggplot(aes(x = Week, y = log(Abundance), group = interaction(Cage, Species))) +
  geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5, fill = Species), alpha = 0.25) +
  geom_line(aes(y = Estimate, color = Species)) +
  geom_jitter(aes(color = Species), size = 0.5) + 
  facet_wrap(~Cage, nrow = 5, ncol = 6) +
  scale_color_viridis_d() +
  scale_fill_viridis_d() +
  theme_cowplot(font_size = 10) +
  geom_vline(xintercept = 1.5, linetype = "dotted", color = "grey") +
  geom_vline(aes(xintercept = last_week), linetype = "dotted", color = "grey") +
  coord_cartesian(ylim = c(0,8)) +
  ylab(expression(log(Abundance[t+1])))
x11(); plot_cage_dynamics20C
#ggsave(plot = plot_cage_dynamics20C, filename = "figures/cage-dynamics-20C.pdf", height = 5, width = 6, device=cairo_pdf)

# 23 C cages
plot_cage_dynamics23C <- filter(predict_all, Cage %in% 31:60) %>%
  left_join(., full_df_last_week) %>%
  ggplot(aes(x = Week, y = log(Abundance), group = interaction(Cage, Species))) +
  geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5, fill = Species), alpha = 0.25) +
  geom_line(aes(y = Estimate, color = Species)) +
  geom_point(aes(color = Species), size = 0.5) +
  facet_wrap(~Cage, nrow = 5, ncol = 6) +
  scale_color_viridis_d() +
  scale_fill_viridis_d() +
  theme_cowplot(font_size = 10) + 
  geom_vline(xintercept = 1.5, linetype = "dotted", color = "grey") +
  geom_vline(aes(xintercept = last_week), linetype = "dotted", color = "grey") +
  coord_cartesian(ylim = c(0,8)) +
  ylab(expression(log(Abundance[t+1])))

Version Author Date
c802852 mabarbour 2021-06-24
x11(); plot_cage_dynamics23C
#ggsave(plot = plot_cage_dynamics23C, filename = "figures/cage-dynamics-23C.pdf", height = 5, width = 6, device=cairo_pdf)

Version Author Date
c802852 mabarbour 2021-06-24

MAR(1) Bayesian R2 in Table S4

bayes_R2(all.mar1.brm.unadj, newdata = BRBR_predict_df, resp = "logBRBRt1")
             Estimate Est.Error      Q2.5     Q97.5
R2logBRBRt1 0.6459414 0.0240262 0.5964847 0.6889248
bayes_R2(all.mar1.brm.unadj, newdata = LYER_predict_df, resp = "logLYERt1")
             Estimate  Est.Error      Q2.5     Q97.5
R2logLYERt1 0.4868861 0.03244113 0.4238835 0.5504909
bayes_R2(all.mar1.brm.unadj, newdata = Ptoid_predict_df, resp = "logPtoidt1")
              Estimate  Est.Error      Q2.5     Q97.5
R2logPtoidt1 0.6301998 0.01178371 0.6018383 0.6475559

Reproduce core of Fig. 4

Plot the effect of AOP2 gene on structural stability of three-species food chain.

median_all.mar1.brm.unadj <- aop2_vs_AOP2_median_effects_unadj(all.mar1.brm.unadj, n.geno = 2, temp.value = 0, logbiomass.value = 0)

# get raw data for manually making plot
get_FD.2sp <- FeasibilityDomain2sp(A = list(median_all.mar1.brm.unadj$aop2.mat[2:3,2:3], 
                                            median_all.mar1.brm.unadj$AOP2.mat[2:3,2:3]),
                     r = list(median_all.mar1.brm.unadj$aop2.IGR[2:3], 
                              median_all.mar1.brm.unadj$AOP2.IGR[2:3]),
                     labels = c("aop2", "AOP2"),
                     normalize = TRUE) %>%
  rename(aop2 = A_ID) 

# Draw polygon for feasibility domain
# from: https://stackoverflow.com/questions/12794596/how-fill-part-of-a-circle-using-ggplot2
# define the circle; add a point at the center if the 'pie slice' if the shape is to be filled
circleFun <- function(center=c(0,0), diameter=1, npoints=100, start=0, end=2, filled=TRUE){
  tt <- seq(start*pi, end*pi, length.out=npoints)
  df <- data.frame(
    x = center[1] + diameter / 2 * cos(tt),
    y = center[2] + diameter / 2 * sin(tt)
  )
  if(filled==TRUE) { #add a point at the center so the whole 'pie slice' is filled
    df <- rbind(df, center)
  }
  return(df)
}

## plot figure 4
# alpha_level <- 0.05 # very low so use better looking arrows with keynote
plot_fig_4 <- ggplot(filter(get_FD.2sp, Type == "r"), aes(x = Sp_1, y = Sp_2)) + 
  # draw intrinsic growth rate vectors
  geom_segment(aes(x = 0, y = 0, xend = Sp_1, yend = Sp_2, linetype = aop2), # alpha for manuscript
               arrow = arrow(type = 'open', length = unit(0.1,"cm"))) +
  # draw critical boundary (remove for final plot after adjusting geom_polygon)
  # geom_segment(data = filter(get_FD.2sp, Type == "A")[c(1,3),], # just need one lower bound
  #              aes(x = 0, y = 0, xend = Sp_1, yend = Sp_2, alpha = aop2),
  #              linetype = "solid",
  #              size = 0.5) +
  xlab("Aphid growth rate (normalized)") + 
  ylab("Parasitoid growth rate (normalized)") +
  # illustrate circular nature of feasibility domain
  coord_cartesian(xlim = c(0,1), ylim = c(-0.9,0), expand = F) + 
  # scale_alpha_manual(values = c(alpha_level, alpha_level), labels = c("AOP2\u2013","AOP2+"), name = "") + # used for manuscript plot to provide better looking arrows with keynote
  scale_linetype_manual(values = c("solid", "dashed"), labels = c("AOP2\u2013","AOP2+"), name = "") +
  # adjusted until critical boundary was correct, then removed critical boundary for final plot
  geom_polygon(data=circleFun(c(0,0), diameter=2, start=0, end=-0.192, npoints=100, filled=TRUE), 
               aes(x,y), alpha = 0.1, inherit.aes = F) +
  theme_cowplot(font_size = 18, line_size = 1)
x11(); plot_fig_4
# changes for final version
# alpha = aop2 in geom_segment(aes())
# uncomment scale_alpha_manual
# comment out scale_linetype_manual
# remove line for critical boundary
# alpha version saved for keynote # ggsave(plot = plot_fig_4, filename = "figures/keystone-structural-stability-forkeynote.pdf", width = 8, height = 8, units = "in")

Version Author Date
c802852 mabarbour 2021-06-24

I then used Keynote to manually add images and text to create the final version presented in Figure 4 of the main text.

Reproduce Fig. S8

# subsample 1/8 of the posterior to make it easier to visualize
rsamp <- sample(1:10000, size = 1000)

# plot
plot_MAR1_posterior_foodchain_AOP2 <- stability_all.mar1.brm.unadj$all.aop2_vs_AOP2_stability.df %>%
  #filter(r_Ptoid < 0) %>%
  filter(posterior_sample %in% rsamp) %>%
  mutate(n.allele = as.numeric(as.factor(aop2_vs_AOP2))) %>%
  ggplot(., aes(x = n.allele, y = FeasibilityBoundaryLYER.Ptoid)) +
  geom_line(aes(group = posterior_sample), alpha = 0.1) +
  stat_summary(fun.y = mean, geom = "line", color = "firebrick1", size = 1) +
  stat_summary(fun.y = mean, geom = "point", color = "firebrick1", size = 1.5) +
  theme_minimal_hgrid() +
  scale_x_continuous(name = "Allele", breaks = c(1,2), labels = c("AOP2+","AOP2\u2013"), expand = c(0.1,0.1)) +
  ylab("Normalized angle from critical boundary") 
#ggsave(filename = "figures/MAR1-posterior-foodchain-AOP2.pdf", width = 6, height = 5, device=cairo_pdf)

Reproduce Fig. S9

The above plot illustrates the effect of AOP2 on the structural stability of the equilibrium abundances of species. I can explore whether our results hold in a non-equilibrium scenario that better characterizes our observational data.

To do this, I look at the the effect of AOP2 across a range of initial conditions for the abundances of LYER and Ptoid. I get this data by simulating community dynamics with the observed effects of AOP2 across a range of initial conditions. I restricted our simulation to 10 time steps, as BRBR went extinct commonly at week 7 (experiment was 17 weeks long). I also set an extinction threshold of 2 individuals.

LP_duration <- 10
LP_threshold <- log(2) # set threshold of two individuals in the populations
res <- 0.1
LP_test_df <- expand.grid(LYER = seq(1, 6, by = res), Ptoid = seq(1, 6, by = res))

## simulate population dynamics and determine which species goes extinct

# aop2
FE_LP_aop2 <- list()
for(i in 1:length(LP_test_df$LYER)){
  FE_LP_aop2[[i]] <- first_extinction_2sp(Initial.States = c(LYER = LP_test_df[i,"LYER"], Ptoid = LP_test_df[i,"Ptoid"]), 
                                          Interaction.Matrix = median_all.mar1.brm.unadj$aop2.mat[2:3,2:3] + diag(2), 
                                          IGR.Vector = median_all.mar1.brm.unadj$aop2.IGR[2:3], 
                                          Duration = LP_duration, 
                                          threshold = LP_threshold)
}
FE_LP_aop2_df <- bind_cols(LP_test_df, plyr::ldply(FE_LP_aop2)) %>%
  mutate(allele = "aop2")

# AOP2
FE_LP_AOP2 <- list()
for(i in 1:length(LP_test_df$LYER)){
  FE_LP_AOP2[[i]] <- first_extinction_2sp(Initial.States = c(LYER = LP_test_df[i,"LYER"], Ptoid = LP_test_df[i,"Ptoid"]), 
                                           Interaction.Matrix = median_all.mar1.brm.unadj$AOP2.mat[2:3,2:3] + diag(2), 
                                           IGR.Vector = median_all.mar1.brm.unadj$AOP2.IGR[2:3], 
                                           Duration = LP_duration, 
                                           threshold = LP_threshold)
}
FE_LP_AOP2_df <- bind_cols(LP_test_df, plyr::ldply(FE_LP_AOP2)) %>%
  mutate(allele = "AOP2")

# get observed data on initial abundances of LYER and Ptoid after BRBR went extinct
cage_type <- LP_df %>%
  distinct(Cage, aop2_vs_AOP2) %>%
  mutate(allele = ifelse(aop2_vs_AOP2 > 0, 1,
                         ifelse(aop2_vs_AOP2 < 0, -1, NA)))

LP_actual_df <- LP_df %>%
  group_by(Cage) %>% # rich,
  summarise_at(vars(LYER_t, Ptoid_t), list(first = first)) %>%
  ungroup() %>%
  mutate(log_LYER_t_first = log(LYER_t_first),
         log_Ptoid_t_first = log(Ptoid_t_first)) %>%
  as.data.frame() %>%
  left_join(., cage_type) %>%
  drop_na() %>% # don't use this in order to plot all cages
  mutate(allele = factor(allele, levels = c(1,-1), labels = c("AOP2\u2013","AOP2+")))

The graph below shows a couple of useful things. First, our predictions hold for outside of equilibrium. That is, there is a greater likelihood of LYER-Ptoid persistence when there are genotypes with the null AOP2\(-\) allele in the population.

It’s also important to note that there is a region of parameter space where LYER goes extinct before Ptoid, which would eventually lead to the collapse of the Ptoid since it has lost its resource. This is not possible if I were to assume the community is at equilibrium.

cbPalette <-  viridis::viridis(4)

with(bind_rows(FE_LP_aop2_df, FE_LP_AOP2_df), table(species))
species
 LYER Ptoid 
 1681  1766 
plot_fig_S9 <- bind_rows(FE_LP_aop2_df, FE_LP_AOP2_df) %>%
  mutate(allele = factor(allele, labels = c("AOP2\u2013","AOP2+"))) %>%
  mutate(species = ifelse(is.na(species) == T, "Food chain persists", species),
         fspecies = factor(species, levels = c("LYER","Ptoid","Food chain persists"), labels = c("Arabidopsis only","Aphid only","Food chain persists"))) %>%
  ggplot(., aes(x = LYER, y = Ptoid)) + # fspecies
  geom_tile(aes(fill = fspecies)) +
  #geom_point(data = LP_actual_df, aes(x = log_LYER_t_adj_first, y = log_Ptoid_t_adj_first)) + 
  facet_grid(~allele) +
  #scale_fill_viridis_d(name = "Critical transition") +
  scale_fill_manual(name = "Food-web transition", values = cbPalette[1:3]) + 
  coord_cartesian(xlim = c(1, max(LP_actual_df$log_LYER_t_first)), 
                  ylim = c(1, max(LP_actual_df$log_Ptoid_t_first))) +
  xlab("Aphid initial abundance (log scale)") +
  ylab("Parasitoid initial abundance (log scale)") +
  theme_cowplot() +
  theme(strip.background = element_blank()) 
x11(); plot_fig_S9
#ggsave(plot = plot_fig_S9, filename = "figures/MAR1-nonequilibrium-foodchain-AOP2.pdf", width = 6, height = 5, device=cairo_pdf)

Version Author Date
c802852 mabarbour 2021-06-24
86116c8 mabarbour 2020-06-23

Alternative models

Drop BRBR -> LYER

# update LYER formula
all.LYER.bf.noBRBRonLYER <- update(all.LYER.bf, .~. -me(logBRBR_t, se_logBRBRt))

all.mar1.brm.unadj.noBRBRonLYER <- brm(
  data = full_df,
  formula = mvbf(all.BRBR.bf, all.LYER.bf.noBRBRonLYER, all.Ptoid.bf) + set_rescor(TRUE), 
  iter = 5000,
  save_pars = save_pars(latent = TRUE, all = TRUE),
  prior = all.mv.priors[-17,],
  file = "output/all.mar1.brm.unadj.noBRBRonLYER.rds")

all.mar1.brm.unadj.noBRBRonLYER
 Family: MV(gaussian, gaussian, gaussian) 
  Links: mu = identity; sigma = identity
         mu = identity; sigma = identity
         mu = identity; sigma = identity 
Formula: log(BRBR_t1) ~ 0 + Intercept + (me(logBRBR_t, se_logBRBRt) + me(logLYER_t, se_logLYERt) + me(logPtoid_t, se_logPtoidt)) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1 | p | Cage) 
         log(LYER_t1) ~ Intercept + me(logLYER_t, se_logLYERt) + me(logPtoid_t, se_logPtoidt) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1 | p | Cage) - 1 
         log(Ptoid_t1) ~ 0 + Intercept + me(logPtoid_t, se_logPtoidt) + me(logBRBR_t, se_logBRBRt) + me(logLYER_t, se_logLYERt) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1 | p | Cage) 
   Data: full_df (Number of observations: 264) 
  Draws: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
         total post-warmup draws = 10000

Group-Level Effects: 
~Cage (Number of levels: 60) 
                                              Estimate Est.Error l-95% CI
sd(logBRBRt1_Intercept)                           0.19      0.13     0.01
sd(logLYERt1_Intercept)                           0.09      0.07     0.00
sd(logPtoidt1_Intercept)                          0.08      0.06     0.00
cor(logBRBRt1_Intercept,logLYERt1_Intercept)      0.04      0.49    -0.86
cor(logBRBRt1_Intercept,logPtoidt1_Intercept)     0.08      0.49    -0.85
cor(logLYERt1_Intercept,logPtoidt1_Intercept)     0.03      0.50    -0.87
                                              u-95% CI Rhat Bulk_ESS Tail_ESS
sd(logBRBRt1_Intercept)                           0.48 1.00     1726     3382
sd(logLYERt1_Intercept)                           0.25 1.00     3642     4521
sd(logPtoidt1_Intercept)                          0.21 1.00     5652     5130
cor(logBRBRt1_Intercept,logLYERt1_Intercept)      0.88 1.00     7182     6805
cor(logBRBRt1_Intercept,logPtoidt1_Intercept)     0.90 1.00     8649     6516
cor(logLYERt1_Intercept,logPtoidt1_Intercept)     0.88 1.00     7696     7899

Population-Level Effects: 
                                    Estimate Est.Error l-95% CI u-95% CI Rhat
logBRBRt1_Intercept                     2.33      0.59     1.18     3.48 1.00
logBRBRt1_aop2_genotypes                0.04      0.13    -0.22     0.30 1.00
logBRBRt1_AOP2_genotypes                0.01      0.12    -0.23     0.24 1.00
logBRBRt1_temp                         -0.52      0.08    -0.67    -0.37 1.00
logBRBRt1_logBiomass_g_t1              -0.02      0.25    -0.50     0.46 1.00
logLYERt1_Intercept                     3.49      0.49     2.52     4.45 1.00
logLYERt1_aop2_genotypes                0.20      0.10     0.01     0.40 1.00
logLYERt1_AOP2_genotypes               -0.08      0.09    -0.26     0.10 1.00
logLYERt1_temp                         -0.12      0.04    -0.21    -0.04 1.00
logLYERt1_logBiomass_g_t1              -0.07      0.21    -0.47     0.33 1.00
logPtoidt1_Intercept                   -1.94      0.53    -2.98    -0.90 1.00
logPtoidt1_aop2_genotypes               0.22      0.11     0.01     0.43 1.00
logPtoidt1_AOP2_genotypes              -0.11      0.10    -0.30     0.08 1.00
logPtoidt1_temp                        -0.15      0.06    -0.27    -0.03 1.00
logPtoidt1_logBiomass_g_t1             -1.12      0.22    -1.54    -0.68 1.00
logBRBRt1_melogBRBR_tse_logBRBRt        0.60      0.09     0.43     0.77 1.00
logBRBRt1_melogLYER_tse_logLYERt        0.13      0.12    -0.09     0.36 1.00
logBRBRt1_melogPtoid_tse_logPtoidt     -0.75      0.06    -0.87    -0.63 1.00
logLYERt1_melogLYER_tse_logLYERt        0.52      0.08     0.37     0.68 1.00
logLYERt1_melogPtoid_tse_logPtoidt     -0.71      0.05    -0.81    -0.62 1.00
logPtoidt1_melogPtoid_tse_logPtoidt     0.99      0.05     0.89     1.09 1.00
logPtoidt1_melogBRBR_tse_logBRBRt       0.08      0.08    -0.07     0.22 1.00
logPtoidt1_melogLYER_tse_logLYERt       0.45      0.10     0.26     0.63 1.00
                                    Bulk_ESS Tail_ESS
logBRBRt1_Intercept                     4900     6370
logBRBRt1_aop2_genotypes                6588     7044
logBRBRt1_AOP2_genotypes                7221     7139
logBRBRt1_temp                          4242     4897
logBRBRt1_logBiomass_g_t1               5461     7121
logLYERt1_Intercept                     3949     5754
logLYERt1_aop2_genotypes                7248     7478
logLYERt1_AOP2_genotypes                7640     7223
logLYERt1_temp                         10199     7636
logLYERt1_logBiomass_g_t1               5320     5978
logPtoidt1_Intercept                    4843     6482
logPtoidt1_aop2_genotypes               8135     7125
logPtoidt1_AOP2_genotypes               9386     7823
logPtoidt1_temp                         6076     6765
logPtoidt1_logBiomass_g_t1              6296     6744
logBRBRt1_melogBRBR_tse_logBRBRt        3616     4579
logBRBRt1_melogLYER_tse_logLYERt        3274     5075
logBRBRt1_melogPtoid_tse_logPtoidt      6194     7109
logLYERt1_melogLYER_tse_logLYERt        4190     5881
logLYERt1_melogPtoid_tse_logPtoidt      6360     6526
logPtoidt1_melogPtoid_tse_logPtoidt     7587     6935
logPtoidt1_melogBRBR_tse_logBRBRt       5280     6362
logPtoidt1_melogLYER_tse_logLYERt       4626     6567

Family Specific Parameters: 
                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma_logBRBRt1      1.24      0.06     1.13     1.36 1.00     8048     7011
sigma_logLYERt1      0.98      0.05     0.90     1.07 1.00     9923     7548
sigma_logPtoidt1     1.02      0.05     0.94     1.12 1.00    11586     7535

Residual Correlations: 
                             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
rescor(logBRBRt1,logLYERt1)      0.49      0.05     0.38     0.58 1.00     7244
rescor(logBRBRt1,logPtoidt1)    -0.22      0.06    -0.34    -0.10 1.00     9870
rescor(logLYERt1,logPtoidt1)    -0.06      0.07    -0.19     0.07 1.00    10875
                             Tail_ESS
rescor(logBRBRt1,logLYERt1)      7667
rescor(logBRBRt1,logPtoidt1)     7561
rescor(logLYERt1,logPtoidt1)     7909

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Carrying capacity check

# BRBR carrying capacity
fixef(all.mar1.brm.unadj.noBRBRonLYER)["logBRBRt1_Intercept","Estimate"] / (1 - fixef(all.mar1.brm.unadj.noBRBRonLYER)["logBRBRt1_melogBRBR_tse_logBRBRt","Estimate"]) # a bit low I think
[1] 5.876553
max(log(full_df$BRBR_t1))
[1] 6.727432
# LYER carrying capacity
fixef(all.mar1.brm.unadj.noBRBRonLYER)["logLYERt1_Intercept","Estimate"] / (1 - fixef(all.mar1.brm.unadj.noBRBRonLYER)["logLYERt1_melogLYER_tse_logLYERt","Estimate"])
[1] 7.285828
max(log(full_df$LYER_t1))
[1] 6.975414

Structural stability check

stability_all.mar1.brm.unadj.noBRBRonLYER <- aop2_vs_AOP2_posterior_samples_unadj(all.mar1.brm.unadj.noBRBRonLYER, n.geno = 2, temp.value = 0, logbiomass.value = 0)
stability_all.mar1.brm.unadj.noBRBRonLYER$aop2_SS_LP_BayesP # same clear inference
[1] 0.9974

AOP2 alters interaction matrix

## Update formula ----

# BRBR
all.BRBR.bf.xAOP2 <- update(all.BRBR.bf, .~. + (me(logBRBR_t, se_logBRBRt) + me(logLYER_t, se_logLYERt) + me(logPtoid_t, se_logPtoidt)):(aop2_genotypes + AOP2_genotypes))

# LYER
all.LYER.bf.xAOP2 <- update(all.LYER.bf, .~. + (me(logBRBR_t, se_logBRBRt) + me(logLYER_t, se_logLYERt) + me(logPtoid_t, se_logPtoidt)):(aop2_genotypes + AOP2_genotypes))

# Ptoid
all.Ptoid.bf.xAOP2 <- update(all.Ptoid.bf, .~. + (me(logBRBR_t, se_logBRBRt) + me(logLYER_t, se_logLYERt) + me(logPtoid_t, se_logPtoidt)):(aop2_genotypes + AOP2_genotypes))

## Update priors ----
all.mv.xAOP2.priors <- c(
  # same priors as before
  all.mv.priors,
  # aop2 effects on interaction matrix
  set_prior(prior.AOP2, class = "b", coef = "melogBRBR_tse_logBRBRt:aop2_genotypes", resp = "logBRBRt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogLYER_tse_logLYERt:aop2_genotypes", resp = "logLYERt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogPtoid_tse_logPtoidt:aop2_genotypes", resp = "logPtoidt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogLYER_tse_logLYERt:aop2_genotypes", resp = "logBRBRt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogBRBR_tse_logBRBRt:aop2_genotypes", resp = "logLYERt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogPtoid_tse_logPtoidt:aop2_genotypes", resp = "logBRBRt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogPtoid_tse_logPtoidt:aop2_genotypes", resp = "logLYERt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogBRBR_tse_logBRBRt:aop2_genotypes", resp = "logPtoidt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogLYER_tse_logLYERt:aop2_genotypes", resp = "logPtoidt1"),
  # AOP2 effects on interaction matrix
  set_prior(prior.AOP2, class = "b", coef = "melogBRBR_tse_logBRBRt:AOP2_genotypes", resp = "logBRBRt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogLYER_tse_logLYERt:AOP2_genotypes", resp = "logLYERt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogPtoid_tse_logPtoidt:AOP2_genotypes", resp = "logPtoidt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogLYER_tse_logLYERt:AOP2_genotypes", resp = "logBRBRt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogBRBR_tse_logBRBRt:AOP2_genotypes", resp = "logLYERt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogPtoid_tse_logPtoidt:AOP2_genotypes", resp = "logBRBRt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogPtoid_tse_logPtoidt:AOP2_genotypes", resp = "logLYERt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogBRBR_tse_logBRBRt:AOP2_genotypes", resp = "logPtoidt1"),
  set_prior(prior.AOP2, class = "b", coef = "melogLYER_tse_logLYERt:AOP2_genotypes", resp = "logPtoidt1"))

## Fit model ----
all.mar1.brm.unadj.xAOP2 <- brm(
  data = full_df,
  formula = mvbf(all.BRBR.bf.xAOP2, all.LYER.bf.xAOP2, all.Ptoid.bf.xAOP2) + set_rescor(TRUE),
  iter = 6000, # increased to avoid Bulk ESS warnings
  save_pars = save_pars(latent = TRUE, all = TRUE),
  prior = all.mv.xAOP2.priors,
  file = "output/all.mar1.brm.unadj.xAOP2.rds")

all.mar1.brm.unadj.xAOP2
 Family: MV(gaussian, gaussian, gaussian) 
  Links: mu = identity; sigma = identity
         mu = identity; sigma = identity
         mu = identity; sigma = identity 
Formula: log(BRBR_t1) ~ Intercept + me(logBRBR_t, se_logBRBRt) + me(logLYER_t, se_logLYERt) + me(logPtoid_t, se_logPtoidt) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1 | p | Cage) + me(logBRBR_t, se_logBRBRt):aop2_genotypes + me(logBRBR_t, se_logBRBRt):AOP2_genotypes + me(logLYER_t, se_logLYERt):aop2_genotypes + me(logLYER_t, se_logLYERt):AOP2_genotypes + me(logPtoid_t, se_logPtoidt):aop2_genotypes + me(logPtoid_t, se_logPtoidt):AOP2_genotypes - 1 
         log(LYER_t1) ~ Intercept + me(logLYER_t, se_logLYERt) + me(logBRBR_t, se_logBRBRt) + me(logPtoid_t, se_logPtoidt) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1 | p | Cage) + me(logBRBR_t, se_logBRBRt):aop2_genotypes + me(logBRBR_t, se_logBRBRt):AOP2_genotypes + me(logLYER_t, se_logLYERt):aop2_genotypes + me(logLYER_t, se_logLYERt):AOP2_genotypes + me(logPtoid_t, se_logPtoidt):aop2_genotypes + me(logPtoid_t, se_logPtoidt):AOP2_genotypes - 1 
         log(Ptoid_t1) ~ Intercept + me(logPtoid_t, se_logPtoidt) + me(logBRBR_t, se_logBRBRt) + me(logLYER_t, se_logLYERt) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1 | p | Cage) + me(logBRBR_t, se_logBRBRt):aop2_genotypes + me(logBRBR_t, se_logBRBRt):AOP2_genotypes + me(logLYER_t, se_logLYERt):aop2_genotypes + me(logLYER_t, se_logLYERt):AOP2_genotypes + me(logPtoid_t, se_logPtoidt):aop2_genotypes + me(logPtoid_t, se_logPtoidt):AOP2_genotypes - 1 
   Data: full_df (Number of observations: 264) 
  Draws: 4 chains, each with iter = 6000; warmup = 3000; thin = 1;
         total post-warmup draws = 12000

Group-Level Effects: 
~Cage (Number of levels: 60) 
                                              Estimate Est.Error l-95% CI
sd(logBRBRt1_Intercept)                           0.19      0.13     0.01
sd(logLYERt1_Intercept)                           0.16      0.10     0.01
sd(logPtoidt1_Intercept)                          0.07      0.06     0.00
cor(logBRBRt1_Intercept,logLYERt1_Intercept)     -0.09      0.49    -0.90
cor(logBRBRt1_Intercept,logPtoidt1_Intercept)     0.10      0.51    -0.86
cor(logLYERt1_Intercept,logPtoidt1_Intercept)    -0.03      0.50    -0.89
                                              u-95% CI Rhat Bulk_ESS Tail_ESS
sd(logBRBRt1_Intercept)                           0.46 1.00     2421     5049
sd(logLYERt1_Intercept)                           0.38 1.00     2268     4082
sd(logPtoidt1_Intercept)                          0.21 1.00     7963     5988
cor(logBRBRt1_Intercept,logLYERt1_Intercept)      0.84 1.00     3997     6271
cor(logBRBRt1_Intercept,logPtoidt1_Intercept)     0.91 1.00    11321     8313
cor(logLYERt1_Intercept,logPtoidt1_Intercept)     0.86 1.00    11121     9465

Population-Level Effects: 
                                                   Estimate Est.Error l-95% CI
logBRBRt1_Intercept                                    2.35      0.67     1.02
logBRBRt1_aop2_genotypes                              -0.00      0.39    -0.78
logBRBRt1_AOP2_genotypes                              -0.04      0.38    -0.79
logBRBRt1_temp                                        -0.44      0.08    -0.60
logBRBRt1_logBiomass_g_t1                             -0.03      0.25    -0.53
logLYERt1_Intercept                                    2.85      0.62     1.64
logLYERt1_aop2_genotypes                               0.09      0.35    -0.60
logLYERt1_AOP2_genotypes                               0.53      0.35    -0.15
logLYERt1_temp                                         0.01      0.06    -0.11
logLYERt1_logBiomass_g_t1                             -0.05      0.21    -0.45
logPtoidt1_Intercept                                  -1.72      0.65    -3.00
logPtoidt1_aop2_genotypes                              0.00      0.38    -0.73
logPtoidt1_AOP2_genotypes                             -0.02      0.37    -0.76
logPtoidt1_temp                                       -0.15      0.06    -0.27
logPtoidt1_logBiomass_g_t1                            -1.15      0.22    -1.58
logBRBRt1_melogBRBR_tse_logBRBRt                       0.81      0.16     0.48
logBRBRt1_melogLYER_tse_logLYERt                      -0.04      0.17    -0.37
logBRBRt1_melogPtoid_tse_logPtoidt                    -0.81      0.12    -1.03
logBRBRt1_melogBRBR_tse_logBRBRt:aop2_genotypes       -0.01      0.10    -0.20
logBRBRt1_melogBRBR_tse_logBRBRt:AOP2_genotypes       -0.07      0.09    -0.25
logBRBRt1_melogLYER_tse_logLYERt:aop2_genotypes       -0.03      0.10    -0.22
logBRBRt1_melogLYER_tse_logLYERt:AOP2_genotypes        0.08      0.10    -0.11
logBRBRt1_melogPtoid_tse_logPtoidt:aop2_genotypes      0.10      0.07    -0.04
logBRBRt1_melogPtoid_tse_logPtoidt:AOP2_genotypes     -0.03      0.07    -0.17
logLYERt1_melogLYER_tse_logLYERt                       0.12      0.15    -0.17
logLYERt1_melogBRBR_tse_logBRBRt                       0.55      0.13     0.29
logLYERt1_melogPtoid_tse_logPtoidt                    -0.67      0.09    -0.85
logLYERt1_melogBRBR_tse_logBRBRt:aop2_genotypes       -0.13      0.08    -0.28
logLYERt1_melogBRBR_tse_logBRBRt:AOP2_genotypes       -0.15      0.07    -0.29
logLYERt1_melogLYER_tse_logLYERt:aop2_genotypes        0.10      0.08    -0.06
logLYERt1_melogLYER_tse_logLYERt:AOP2_genotypes        0.06      0.08    -0.10
logLYERt1_melogPtoid_tse_logPtoidt:aop2_genotypes      0.09      0.06    -0.03
logLYERt1_melogPtoid_tse_logPtoidt:AOP2_genotypes     -0.11      0.06    -0.22
logPtoidt1_melogPtoid_tse_logPtoidt                    0.98      0.10     0.78
logPtoidt1_melogBRBR_tse_logBRBRt                      0.33      0.14     0.06
logPtoidt1_melogLYER_tse_logLYERt                      0.19      0.15    -0.11
logPtoidt1_melogBRBR_tse_logBRBRt:aop2_genotypes      -0.13      0.08    -0.28
logPtoidt1_melogBRBR_tse_logBRBRt:AOP2_genotypes      -0.11      0.08    -0.26
logPtoidt1_melogLYER_tse_logLYERt:aop2_genotypes       0.13      0.09    -0.03
logPtoidt1_melogLYER_tse_logLYERt:AOP2_genotypes       0.10      0.08    -0.06
logPtoidt1_melogPtoid_tse_logPtoidt:aop2_genotypes     0.05      0.06    -0.07
logPtoidt1_melogPtoid_tse_logPtoidt:AOP2_genotypes    -0.05      0.06    -0.16
                                                   u-95% CI Rhat Bulk_ESS
logBRBRt1_Intercept                                    3.65 1.00     8250
logBRBRt1_aop2_genotypes                               0.76 1.00     9742
logBRBRt1_AOP2_genotypes                               0.70 1.00     9109
logBRBRt1_temp                                        -0.29 1.00     6432
logBRBRt1_logBiomass_g_t1                              0.47 1.00    11376
logLYERt1_Intercept                                    4.07 1.00     7045
logLYERt1_aop2_genotypes                               0.79 1.00     9122
logLYERt1_AOP2_genotypes                               1.22 1.00     7953
logLYERt1_temp                                         0.13 1.00     6592
logLYERt1_logBiomass_g_t1                              0.36 1.00    10690
logPtoidt1_Intercept                                  -0.44 1.00     8446
logPtoidt1_aop2_genotypes                              0.74 1.00     9598
logPtoidt1_AOP2_genotypes                              0.71 1.00     8896
logPtoidt1_temp                                       -0.03 1.00    10675
logPtoidt1_logBiomass_g_t1                            -0.71 1.00    12565
logBRBRt1_melogBRBR_tse_logBRBRt                       1.12 1.00     4383
logBRBRt1_melogLYER_tse_logLYERt                       0.30 1.00     4727
logBRBRt1_melogPtoid_tse_logPtoidt                    -0.58 1.00     6268
logBRBRt1_melogBRBR_tse_logBRBRt:aop2_genotypes        0.18 1.00     5734
logBRBRt1_melogBRBR_tse_logBRBRt:AOP2_genotypes        0.12 1.00     6401
logBRBRt1_melogLYER_tse_logLYERt:aop2_genotypes        0.17 1.00     5784
logBRBRt1_melogLYER_tse_logLYERt:AOP2_genotypes        0.27 1.00     6072
logBRBRt1_melogPtoid_tse_logPtoidt:aop2_genotypes      0.24 1.00     7314
logBRBRt1_melogPtoid_tse_logPtoidt:AOP2_genotypes      0.10 1.00     8784
logLYERt1_melogLYER_tse_logLYERt                       0.42 1.00     4436
logLYERt1_melogBRBR_tse_logBRBRt                       0.80 1.00     4427
logLYERt1_melogPtoid_tse_logPtoidt                    -0.49 1.00     6651
logLYERt1_melogBRBR_tse_logBRBRt:aop2_genotypes        0.02 1.00     5821
logLYERt1_melogBRBR_tse_logBRBRt:AOP2_genotypes       -0.00 1.00     6166
logLYERt1_melogLYER_tse_logLYERt:aop2_genotypes        0.26 1.00     6202
logLYERt1_melogLYER_tse_logLYERt:AOP2_genotypes        0.21 1.00     5591
logLYERt1_melogPtoid_tse_logPtoidt:aop2_genotypes      0.20 1.00     7300
logLYERt1_melogPtoid_tse_logPtoidt:AOP2_genotypes     -0.00 1.00     9162
logPtoidt1_melogPtoid_tse_logPtoidt                    1.17 1.00     7012
logPtoidt1_melogBRBR_tse_logBRBRt                      0.60 1.00     4759
logPtoidt1_melogLYER_tse_logLYERt                      0.48 1.00     4981
logPtoidt1_melogBRBR_tse_logBRBRt:aop2_genotypes       0.03 1.00     6649
logPtoidt1_melogBRBR_tse_logBRBRt:AOP2_genotypes       0.03 1.00     6903
logPtoidt1_melogLYER_tse_logLYERt:aop2_genotypes       0.29 1.00     6382
logPtoidt1_melogLYER_tse_logLYERt:AOP2_genotypes       0.27 1.00     6471
logPtoidt1_melogPtoid_tse_logPtoidt:aop2_genotypes     0.18 1.00     8181
logPtoidt1_melogPtoid_tse_logPtoidt:AOP2_genotypes     0.07 1.00     9301
                                                   Tail_ESS
logBRBRt1_Intercept                                    8641
logBRBRt1_aop2_genotypes                               8766
logBRBRt1_AOP2_genotypes                               8472
logBRBRt1_temp                                         7380
logBRBRt1_logBiomass_g_t1                              9052
logLYERt1_Intercept                                    7962
logLYERt1_aop2_genotypes                               9173
logLYERt1_AOP2_genotypes                               8537
logLYERt1_temp                                         7007
logLYERt1_logBiomass_g_t1                              9333
logPtoidt1_Intercept                                   8150
logPtoidt1_aop2_genotypes                              8694
logPtoidt1_AOP2_genotypes                              8905
logPtoidt1_temp                                        9495
logPtoidt1_logBiomass_g_t1                             9380
logBRBRt1_melogBRBR_tse_logBRBRt                       6291
logBRBRt1_melogLYER_tse_logLYERt                       6595
logBRBRt1_melogPtoid_tse_logPtoidt                     7867
logBRBRt1_melogBRBR_tse_logBRBRt:aop2_genotypes        7981
logBRBRt1_melogBRBR_tse_logBRBRt:AOP2_genotypes        7482
logBRBRt1_melogLYER_tse_logLYERt:aop2_genotypes        7720
logBRBRt1_melogLYER_tse_logLYERt:AOP2_genotypes        7428
logBRBRt1_melogPtoid_tse_logPtoidt:aop2_genotypes      8702
logBRBRt1_melogPtoid_tse_logPtoidt:AOP2_genotypes      9321
logLYERt1_melogLYER_tse_logLYERt                       6560
logLYERt1_melogBRBR_tse_logBRBRt                       6765
logLYERt1_melogPtoid_tse_logPtoidt                     8133
logLYERt1_melogBRBR_tse_logBRBRt:aop2_genotypes        8428
logLYERt1_melogBRBR_tse_logBRBRt:AOP2_genotypes        7545
logLYERt1_melogLYER_tse_logLYERt:aop2_genotypes        7801
logLYERt1_melogLYER_tse_logLYERt:AOP2_genotypes        7431
logLYERt1_melogPtoid_tse_logPtoidt:aop2_genotypes      8099
logLYERt1_melogPtoid_tse_logPtoidt:AOP2_genotypes      8485
logPtoidt1_melogPtoid_tse_logPtoidt                    7899
logPtoidt1_melogBRBR_tse_logBRBRt                      7047
logPtoidt1_melogLYER_tse_logLYERt                      7167
logPtoidt1_melogBRBR_tse_logBRBRt:aop2_genotypes       8171
logPtoidt1_melogBRBR_tse_logBRBRt:AOP2_genotypes       8276
logPtoidt1_melogLYER_tse_logLYERt:aop2_genotypes       7798
logPtoidt1_melogLYER_tse_logLYERt:AOP2_genotypes       8083
logPtoidt1_melogPtoid_tse_logPtoidt:aop2_genotypes     8776
logPtoidt1_melogPtoid_tse_logPtoidt:AOP2_genotypes     8767

Family Specific Parameters: 
                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma_logBRBRt1      1.23      0.06     1.12     1.35 1.00    11865     9993
sigma_logLYERt1      0.93      0.05     0.85     1.02 1.00     8899     8868
sigma_logPtoidt1     1.02      0.05     0.93     1.11 1.00    14446     9705

Residual Correlations: 
                             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
rescor(logBRBRt1,logLYERt1)      0.48      0.05     0.37     0.57 1.00     9700
rescor(logBRBRt1,logPtoidt1)    -0.24      0.06    -0.36    -0.11 1.00    12106
rescor(logLYERt1,logPtoidt1)    -0.10      0.06    -0.22     0.03 1.00    14457
                             Tail_ESS
rescor(logBRBRt1,logLYERt1)      9690
rescor(logBRBRt1,logPtoidt1)     9228
rescor(logLYERt1,logPtoidt1)     9204

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Carrying capacity check

B. brassicae:

# baseline
r_BRBR.xAOP2.all <- fixef(all.mar1.brm.unadj.xAOP2)["logBRBRt1_Intercept","Estimate"]
intra_BRBR.xAOP2.all <- fixef(all.mar1.brm.unadj.xAOP2)["logBRBRt1_melogBRBR_tse_logBRBRt","Estimate"]
K_BRBR.xAOP2.all_base <- r_BRBR.xAOP2.all / (1 - intra_BRBR.xAOP2.all) # too high

# aop2 effect
aop2_r_BRBR.xAOP2.all <- fixef(all.mar1.brm.unadj.xAOP2)["logBRBRt1_aop2_genotypes","Estimate"]
aop2_intra_BRBR.xAOP2.all <- fixef(all.mar1.brm.unadj.xAOP2)["logBRBRt1_melogBRBR_tse_logBRBRt:aop2_genotypes","Estimate"]
K_BRBR.xAOP2.all_aop2 <- (r_BRBR.xAOP2.all + aop2_r_BRBR.xAOP2.all) / (1 - (intra_BRBR.xAOP2.all + aop2_intra_BRBR.xAOP2.all)) 

# AOP2 effect
AOP2_r_BRBR.xAOP2.all <- fixef(all.mar1.brm.unadj.xAOP2)["logBRBRt1_AOP2_genotypes","Estimate"]
AOP2_intra_BRBR.xAOP2.all <- fixef(all.mar1.brm.unadj.xAOP2)["logBRBRt1_melogBRBR_tse_logBRBRt:AOP2_genotypes","Estimate"]
K_BRBR.xAOP2.all_AOP2 <- (r_BRBR.xAOP2.all + AOP2_r_BRBR.xAOP2.all) / (1 - (intra_BRBR.xAOP2.all + AOP2_intra_BRBR.xAOP2.all)) 

# compare aop2 vs baseline carrying capacity
K_BRBR.xAOP2.all_base - K_BRBR.xAOP2.all_aop2 > 0 # base > aop2? Says it is, which doesn't make sense. 
[1] TRUE
# compare AOP2 vs baseline 
K_BRBR.xAOP2.all_base - K_BRBR.xAOP2.all_AOP2 > 0 # base > AOP2? Says it is, which is expected
[1] TRUE

L. erysimi:

# baseline
r_LYER.xAOP2.all <- fixef(all.mar1.brm.unadj.xAOP2)["logLYERt1_Intercept","Estimate"]
intra_LYER.xAOP2.all <- fixef(all.mar1.brm.unadj.xAOP2)["logLYERt1_melogLYER_tse_logLYERt","Estimate"]
K_LYER.xAOP2.all_base <- r_LYER.xAOP2.all / (1 - intra_LYER.xAOP2.all) # too low

# aop2 effect
aop2_r_LYER.xAOP2.all <- fixef(all.mar1.brm.unadj.xAOP2)["logLYERt1_aop2_genotypes","Estimate"]
aop2_intra_LYER.xAOP2.all <- fixef(all.mar1.brm.unadj.xAOP2)["logLYERt1_melogLYER_tse_logLYERt:aop2_genotypes","Estimate"]
K_LYER.xAOP2.all_aop2 <- (r_LYER.xAOP2.all + aop2_r_LYER.xAOP2.all) / (1 - (intra_LYER.xAOP2.all + aop2_intra_LYER.xAOP2.all))

# AOP2 effect
AOP2_r_LYER.xAOP2.all <- fixef(all.mar1.brm.unadj.xAOP2)["logLYERt1_AOP2_genotypes","Estimate"]
AOP2_intra_LYER.xAOP2.all <- fixef(all.mar1.brm.unadj.xAOP2)["logLYERt1_melogLYER_tse_logLYERt:AOP2_genotypes","Estimate"]
K_LYER.xAOP2.all_AOP2 <- (r_LYER.xAOP2.all + AOP2_r_LYER.xAOP2.all) / (1 - (intra_LYER.xAOP2.all + AOP2_intra_LYER.xAOP2.all))

# compare aop2 vs baseline carrying capacity
K_LYER.xAOP2.all_base - K_LYER.xAOP2.all_aop2 > 0 # base > aop2? Says it isn't, which makes sense. 
[1] FALSE
# compare AOP2 vs baseline 
K_LYER.xAOP2.all_base - K_LYER.xAOP2.all_AOP2 > 0 # base > AOP2? Says it isn't, but I would expect it to be
[1] FALSE

This model gives unrealistic estimates for B. brassicae’s carrying capacity (ridiculously high, 176410 individuals) and L. erysimi’s carrying capacity (way too low, 25 individuals). Moreover, this model predicts that adding genotypes with a null AOP2\(-\) allele to the plant population will actually decrease the aphids carrying capacity, despite the documented positive effect on plant growth. All of these biological predictions are unreasonable, so we don’t consider this model further.

MAR(2) model

## update formula
all.BRBR.bf.ar2 <- update(all.BRBR.bf, .~. + me(logBRBR_t0, se_logBRBRt) + me(logLYER_t0, se_logLYERt) + me(logPtoid_t0, se_logPtoidt))
all.LYER.bf.ar2 <- update(all.LYER.bf, .~. + me(logBRBR_t0, se_logBRBRt) + me(logLYER_t0, se_logLYERt) + me(logPtoid_t0, se_logPtoidt))
all.Ptoid.bf.ar2 <- update(all.Ptoid.bf, .~. + me(logBRBR_t0, se_logBRBRt) + me(logLYER_t0, se_logLYERt) + me(logPtoid_t0, se_logPtoidt))

## fit model
all.mar1.brm.unadj.ar2 <- brm(
  data = full_df,
  formula = mvbf(all.BRBR.bf.ar2, all.LYER.bf.ar2, all.Ptoid.bf.ar2) + set_rescor(TRUE),
  iter = 5000,
  save_pars = save_pars(latent = TRUE, all = TRUE),
  prior = all.mv.priors,
  file = "output/all.mar1.brm.unadj.ar2.lag.rds")

Carrying capacity check

# BRBR carrying capacity
fixef(all.mar1.brm.unadj.ar2)["logBRBRt1_Intercept","Estimate"] / (1 - fixef(all.mar1.brm.unadj.ar2)["logBRBRt1_melogBRBR_tse_logBRBRt","Estimate"]) # way too high
[1] 12.56733
# LYER carrying capacity
fixef(all.mar1.brm.unadj)["logLYERt1_Intercept","Estimate"] / (1 - fixef(all.mar1.brm.unadj)["logLYERt1_melogLYER_tse_logLYERt","Estimate"]) # way too low
[1] 4.675535

Structural stability check

stability_all.mar1.brm.unadj.ar2 <- aop2_vs_AOP2_posterior_samples_unadj(all.mar1.brm.unadj.ar2, n.geno = 2, temp.value = 0, logbiomass.value = 0)
stability_all.mar1.brm.unadj.ar2$aop2_SS_LP_BayesP # same inference!
[1] 0.9942

Reproduce Bayesian R2 in Table S4 Bayesian R2

## MAR(1) model
bayes_R2(all.mar1.brm.unadj, newdata = BRBR_predict_df, resp = "logBRBRt1")
             Estimate  Est.Error      Q2.5     Q97.5
R2logBRBRt1 0.6458209 0.02397003 0.5954573 0.6884681
bayes_R2(all.mar1.brm.unadj, newdata = LYER_predict_df, resp = "logLYERt1")
             Estimate  Est.Error      Q2.5     Q97.5
R2logLYERt1 0.4869248 0.03251046 0.4239504 0.5506908
bayes_R2(all.mar1.brm.unadj, newdata = Ptoid_predict_df, resp = "logPtoidt1")
              Estimate  Est.Error      Q2.5     Q97.5
R2logPtoidt1 0.6301973 0.01173414 0.6023809 0.6473038
## MAR(2) model 
bayes_R2(all.mar1.brm.unadj.ar2, newdata = BRBR_predict_df, resp = "logBRBRt1")
             Estimate  Est.Error      Q2.5     Q97.5
R2logBRBRt1 0.7281811 0.01366882 0.6990006 0.7525384
bayes_R2(all.mar1.brm.unadj.ar2, newdata = LYER_predict_df, resp = "logLYERt1")
             Estimate  Est.Error     Q2.5     Q97.5
R2logLYERt1 0.5115748 0.03210331 0.447848 0.5736911
bayes_R2(all.mar1.brm.unadj.ar2, newdata = Ptoid_predict_df, resp = "logPtoidt1")
              Estimate  Est.Error      Q2.5     Q97.5
R2logPtoidt1 0.5987022 0.01475788 0.5667047 0.6245675

Adjusted data

## update formula ----

# BRBR
all.BRBR.bf.adj <- bf(log(BRBR_t1) ~ 0 + Intercept + (me(logBRBR_t, se_logBRBRt) + me(logLYER_t_adj, se_logLYERt) + me(logPtoid_t_adj, se_logPtoidt)) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1|p|Cage))

# LYER
all.LYER.bf.adj <- bf(log(LYER_t1_adj) ~ 0 + Intercept + (me(logLYER_t_adj, se_logLYERt) + me(logBRBR_t, se_logBRBRt) + me(logPtoid_t_adj, se_logPtoidt)) + aop2_genotypes + AOP2_genotypes + temp + log(Biomass_g_t1) + (1|p|Cage))

# Ptoid
all.Ptoid.bf.adj <- bf(log(Ptoid_t1_adj) ~ 0 + Intercept + me(logPtoid_t_adj, se_logPtoidt) + me(logBRBR_t, se_logBRBRt) + me(logLYER_t_adj, se_logLYERt) + aop2_genotypes + temp + AOP2_genotypes + log(Biomass_g_t1) + (1|p|Cage))

## update priors ----
all.mv.priors.adj <- c(
  # aop2 and AOP2 effects
  set_prior(prior.AOP2, class = "b", coef = "aop2_genotypes", resp = "logBRBRt1"), 
  set_prior(prior.AOP2, class = "b", coef = "AOP2_genotypes", resp = "logBRBRt1"), 
  set_prior(prior.AOP2, class = "b", coef = "aop2_genotypes", resp = "logLYERt1adj"),
  set_prior(prior.AOP2, class = "b", coef = "AOP2_genotypes", resp = "logLYERt1adj"),
  set_prior(prior.AOP2, class = "b", coef = "aop2_genotypes", resp = "logPtoidt1adj"),
  set_prior(prior.AOP2, class = "b", coef = "AOP2_genotypes", resp = "logPtoidt1adj"),
  # biomass effects
  set_prior(prior.AphidBiomass, class = "b", coef = "logBiomass_g_t1", resp = "logBRBRt1"),
  set_prior(prior.AphidBiomass, class = "b", coef = "logBiomass_g_t1", resp = "logLYERt1adj"),
  set_prior(prior.PtoidBiomass, class = "b", coef = "logBiomass_g_t1", resp = "logPtoidt1adj"),
  # temp effects
  set_prior(prior.temp, class = "b", coef = "temp", resp = "logBRBRt1"),
  set_prior(prior.temp, class = "b", coef = "temp", resp = "logLYERt1adj"),
  set_prior(prior.temp, class = "b", coef = "temp", resp = "logPtoidt1adj"),
  # baseline growth rates
  set_prior(prior.r.BRBR, class = "b", coef = "Intercept", resp = "logBRBRt1"), 
  set_prior(prior.r.LYER, class = "b", coef = "Intercept", resp = "logLYERt1adj"),
  set_prior(prior.r.Ptoid, class = "b", coef = "Intercept", resp = "logPtoidt1adj"),
  # intraspecific effects
  set_prior(prior.intra.BRBR, class = "b", coef = "melogBRBR_tse_logBRBRt", resp = "logBRBRt1"),
  set_prior(prior.intra.LYER, class = "b", coef = "melogLYER_t_adjse_logLYERt", resp = "logLYERt1adj"), 
  set_prior(prior.intra.Ptoid, class = "b", coef = "melogPtoid_t_adjse_logPtoidt", resp = "logPtoidt1adj"),
  # negative interspecific effects
  set_prior(prior.LYERonBRBR, class = "b", coef = "melogLYER_t_adjse_logLYERt", resp = "logBRBRt1"),
  set_prior(prior.BRBRonLYER, class = "b", coef = "melogBRBR_tse_logBRBRt", resp = "logLYERt1adj"),
  set_prior(prior.PtoidonBRBR, class = "b", coef = "melogPtoid_t_adjse_logPtoidt", resp = "logBRBRt1"),
  set_prior(prior.PtoidonLYER, class = "b", coef = "melogPtoid_t_adjse_logPtoidt", resp = "logLYERt1adj"),
  # positive interspecific effects
  set_prior(prior.BRBRonPtoid, class = "b", coef = "melogBRBR_tse_logBRBRt", resp = "logPtoidt1adj"),
  set_prior(prior.LYERonPtoid, class = "b", coef = "melogLYER_t_adjse_logLYERt", resp = "logPtoidt1adj"),
  # random effects
  set_prior(prior.random.effects, class = "sd", resp = "logBRBRt1"), 
  set_prior(prior.random.effects, class = "sd", resp = "logLYERt1adj"), 
  set_prior(prior.random.effects, class = "sd", resp = "logPtoidt1adj"))

## fit model
all.mar1.brm.adj <- brm(
  data = full_df,
  formula = mvbf(all.BRBR.bf.adj, all.LYER.bf.adj, all.Ptoid.bf.adj) + set_rescor(TRUE),
  iter = 5000,
  save_pars = save_pars(latent = TRUE, all = TRUE),
  prior = all.mv.priors.adj,
  file = "output/all.mar1.brm.adj.rds")

Structural stability check

stability_all.mar1.brm.adj <- aop2_vs_AOP2_posterior_samples_adj(all.mar1.brm.adj, n.geno = 2, temp.value = 0, logbiomass.value = 0) 
stability_all.mar1.brm.adj$aop2_SS_LP_BayesP # same inference
[1] 0.979

Aphid intrinsic growth rates

Confirmation with independent data (not used in model for all species) that AOP\(-\) increases the intrinsic growth rate of the aphids.

Unadjusted data

# BRBR
initial.BRBR.bf <- bf(log(BRBR_t1) ~ 0 + Intercept + offset(log(4)) + aop2_genotypes + AOP2_genotypes + temp) 

# LYER
initial.LYER.bf <- bf(log(LYER_t1) ~ 0 + Intercept + offset(log(4)) + aop2_genotypes + AOP2_genotypes + temp)

# Prior
initial.mv.prior <- c(
  # aop2 effects
  set_prior(prior.AOP2, class = "b", coef = "aop2_genotypes", resp = "logBRBRt1"),
  set_prior(prior.AOP2, class = "b", coef = "AOP2_genotypes", resp = "logBRBRt1"),
  set_prior(prior.AOP2, class = "b", coef = "aop2_genotypes", resp = "logLYERt1"),
  set_prior(prior.AOP2, class = "b", coef = "AOP2_genotypes", resp = "logLYERt1"),
  # temp effects
  set_prior(prior.temp, class = "b", coef = "temp", resp = "logBRBRt1"),
  set_prior(prior.temp, class = "b", coef = "temp", resp = "logLYERt1"),
  # growth rates
  set_prior(prior.r.BRBR, class = "b", coef = "Intercept", resp = "logBRBRt1"),
  set_prior(prior.r.LYER, class = "b", coef = "Intercept", resp = "logLYERt1"))

# fit model
initial.mar1.brm.unadj <- brm(
  data = filter(aphids_only_df, Week == 0),
  formula = mvbf(initial.BRBR.bf, initial.LYER.bf) + set_rescor(TRUE),
  iter = 5000, 
  save_pars = save_pars(latent = TRUE, all = TRUE),
  prior = initial.mv.prior,
  file = "output/initial.mar1.brm.unadj.rds") 

# get posteriors
ps_initial.mar1.brm.unadj <- posterior_samples(initial.mar1.brm.unadj, pars = c("b_logBRBRt1_aop2_genotypes","b_logBRBRt1_AOP2_genotypes","b_logLYERt1_aop2_genotypes","b_logLYERt1_AOP2_genotypes")) %>%
  mutate(aop2_vs_AOP2_r_BRBR = b_logBRBRt1_aop2_genotypes - b_logBRBRt1_AOP2_genotypes,
         aop2_vs_AOP2_r_LYER = b_logLYERt1_aop2_genotypes - b_logLYERt1_AOP2_genotypes)

# r BRBR, aop2 vs AOP2
median(ps_initial.mar1.brm.unadj$aop2_vs_AOP2_r_BRBR)
[1] 0.3298602
quantile(ps_initial.mar1.brm.unadj$aop2_vs_AOP2_r_BRBR, probs = c(0.025,0.975))
      2.5%      97.5% 
0.06062928 0.58563572 
# r LYER, aop2 vs AOP2
median(ps_initial.mar1.brm.unadj$aop2_vs_AOP2_r_LYER)
[1] 1.014212
quantile(ps_initial.mar1.brm.unadj$aop2_vs_AOP2_r_LYER, probs = c(0.025,0.975))
     2.5%     97.5% 
0.5872244 1.4224264 

Adjusted data

# LYER
initial.LYER.bf.adj <- bf(log(LYER_t1_adj) ~ 0 + Intercept + offset(log(4)) + aop2_genotypes + AOP2_genotypes + temp)

# Priors
initial.mv.prior.adj <- c(
  # aop2 effects
  set_prior(prior.AOP2, class = "b", coef = "aop2_genotypes", resp = "logBRBRt1"),
  set_prior(prior.AOP2, class = "b", coef = "AOP2_genotypes", resp = "logBRBRt1"),
  set_prior(prior.AOP2, class = "b", coef = "aop2_genotypes", resp = "logLYERt1adj"),
  set_prior(prior.AOP2, class = "b", coef = "AOP2_genotypes", resp = "logLYERt1adj"),
  # temp effects
  set_prior(prior.temp, class = "b", coef = "temp", resp = "logBRBRt1"),
  set_prior(prior.temp, class = "b", coef = "temp", resp = "logLYERt1adj"),
  # growth rates
  set_prior(prior.r.BRBR, class = "b", coef = "Intercept", resp = "logBRBRt1"),
  set_prior(prior.r.LYER, class = "b", coef = "Intercept", resp = "logLYERt1adj"))

# fit model
initial.mar1.brm.adj <- brm(
  data = filter(aphids_only_df, Week == 0),
  formula = mvbf(initial.BRBR.bf, initial.LYER.bf.adj) + set_rescor(TRUE),
  iter = 5000, 
  save_pars = save_pars(latent = TRUE, all = TRUE),
  prior = initial.mv.prior.adj,
  file = "output/initial.mar1.brm.adj.rds") 

ps_initial.mar1.brm.adj <- posterior_samples(initial.mar1.brm.adj, pars = c("b_logBRBRt1_aop2_genotypes","b_logBRBRt1_AOP2_genotypes","b_logLYERt1adj_aop2_genotypes","b_logLYERt1adj_AOP2_genotypes")) %>%
  mutate(aop2_vs_AOP2_r_BRBR = b_logBRBRt1_aop2_genotypes - b_logBRBRt1_AOP2_genotypes,
         aop2_vs_AOP2_r_LYER = b_logLYERt1adj_aop2_genotypes - b_logLYERt1adj_AOP2_genotypes)

# r BRBR, aop2 vs AOP2
median(ps_initial.mar1.brm.adj$aop2_vs_AOP2_r_BRBR)
[1] 0.3369524
quantile(ps_initial.mar1.brm.adj$aop2_vs_AOP2_r_BRBR, probs = c(0.025,0.975))
     2.5%     97.5% 
0.0749945 0.5938041 
# r LYER, aop2 vs AOP2
median(ps_initial.mar1.brm.adj$aop2_vs_AOP2_r_LYER)
[1] 0.4574658
quantile(ps_initial.mar1.brm.adj$aop2_vs_AOP2_r_LYER, probs = c(0.025,0.975))
     2.5%     97.5% 
0.2832546 0.6327860 

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.7 LTS

Matrix products: default
BLAS:   /usr/lib/libblas/libblas.so.3.6.0
LAPACK: /usr/lib/lapack/liblapack.so.3.6.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] bayesplot_1.8.1 rgl_0.106.8     knitr_1.37      tidybayes_2.3.1
 [5] matlib_0.9.4    cowplot_1.1.1   forcats_0.5.1   stringr_1.4.0  
 [9] dplyr_1.0.7     purrr_0.3.4     readr_2.1.1     tidyr_1.1.4    
[13] tibble_3.1.6    ggplot2_3.3.5   tidyverse_1.3.1 brms_2.16.3    
[17] Rcpp_1.0.7      RCurl_1.98-1.3  MASS_7.3-54     workflowr_1.6.2

loaded via a namespace (and not attached):
  [1] readxl_1.3.1            backports_1.4.1         plyr_1.8.6             
  [4] igraph_1.2.11           svUnit_1.0.6            crosstalk_1.2.0        
  [7] rstantools_2.1.1        inline_0.3.19           digest_0.6.29          
 [10] htmltools_0.5.2         viridis_0.6.1           rsconnect_0.8.25       
 [13] fansi_1.0.0             magrittr_2.0.1          checkmate_2.0.0        
 [16] tzdb_0.2.0              openxlsx_4.2.4          modelr_0.1.8           
 [19] RcppParallel_5.1.5      matrixStats_0.61.0      xts_0.12.1             
 [22] prettyunits_1.1.1       colorspace_2.0-2        rvest_1.0.2            
 [25] ggdist_2.4.1            haven_2.4.3             xfun_0.29              
 [28] callr_3.7.0             crayon_1.4.2            jsonlite_1.7.2         
 [31] zoo_1.8-9               glue_1.6.0              gtable_0.3.0           
 [34] distributional_0.2.2    car_3.0-10              pkgbuild_1.3.1         
 [37] rstan_2.21.3            abind_1.4-5             scales_1.1.1           
 [40] mvtnorm_1.1-3           DBI_1.1.2               miniUI_0.1.1.1         
 [43] viridisLite_0.4.0       xtable_1.8-3            foreign_0.8-81         
 [46] stats4_4.1.2            StanHeaders_2.21.0-7    DT_0.20                
 [49] htmlwidgets_1.5.4       httr_1.4.2              threejs_0.3.3          
 [52] arrayhelpers_1.1-0      posterior_1.2.0         ellipsis_0.3.2         
 [55] pkgconfig_2.0.3         loo_2.4.1               farver_2.1.0           
 [58] sass_0.4.0              dbplyr_2.1.1            utf8_1.2.2             
 [61] labeling_0.4.2          tidyselect_1.1.1        rlang_0.4.12           
 [64] manipulateWidget_0.11.0 reshape2_1.4.4          later_1.3.0            
 [67] munsell_0.5.0           cellranger_1.1.0        tools_4.1.2            
 [70] cli_3.1.0               generics_0.1.1          broom_0.7.11           
 [73] ggridges_0.5.3          evaluate_0.14           fastmap_1.1.0          
 [76] yaml_2.2.1              processx_3.5.2          fs_1.5.2               
 [79] zip_2.2.0               nlme_3.1-152            whisker_0.4            
 [82] mime_0.12               xml2_1.3.3              compiler_4.1.2         
 [85] shinythemes_1.2.0       rstudioapi_0.13         curl_4.3.2             
 [88] reprex_2.0.1            bslib_0.3.1             stringi_1.7.3          
 [91] highr_0.9               ps_1.6.0                Brobdingnag_1.2-6      
 [94] lattice_0.20-45         Matrix_1.4-0            markdown_1.1           
 [97] shinyjs_2.1.0           tensorA_0.36.2          vctrs_0.3.8            
[100] pillar_1.6.4            lifecycle_1.0.1         jquerylib_0.1.4        
[103] bridgesampling_1.1-2    data.table_1.14.2       bitops_1.0-7           
[106] httpuv_1.6.5            R6_2.5.1                promises_1.2.0.1       
[109] gridExtra_2.3           rio_0.5.26              codetools_0.2-18       
[112] colourpicker_1.1.1      gtools_3.9.2            assertthat_0.2.1       
[115] rprojroot_2.0.2         withr_2.4.3             shinystan_2.5.0        
[118] parallel_4.1.2          hms_1.1.1               grid_4.1.2             
[121] coda_0.19-4             rmarkdown_2.11          carData_3.0-4          
[124] git2r_0.28.0            shiny_1.7.1             lubridate_1.8.0        
[127] base64enc_0.1-3         dygraphs_1.1.1.6